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Abstract

A computational model is proposed to evaluate a non-
Boolean proposition of the form ”X is {A-like} to the extent
σ” , where X is any concept, and {A-like} is an element of a
set of ill-defined but intrinsic qualities of X . We call this type
of evaluation Intrinsic Analysis (IA). To evaluate this form, a
Neutral Semantic Subspace where σ becomes 0 is computed
as a subspace in a high-dimensional word vector space using
the geometric symmetry of opposing concepts. The results of
three experiments show that this computational model (1) acts
well in judging synonymy, a special case of Intrinsic Analysis
(IA), (2) outperforms several existing methods in a sentiment
analysis task, a subcategory of IA, and (3) is consistent with
human intuition in its IA evaluation of the intrinsic descrip-
tive meaning of a document.

1 Introduction
Is the Mona Lisa artistic? Most people would say yes, but
is this really the case? Note that the term ‘artistic’ is used
here instead of ‘art’. The fact that the Mona Lisa belongs to
the category of ‘art’ is judged as true or false. On the other
hand, the judgment of whether the Mona Lisa is ‘artistic’ in-
cludes ambiguity and is not intrinsically evaluated with a bi-
nary classification. Now let us replace the ‘Mona Lisa’ with
‘dresses’ and the ‘artistic’ with the ‘formal’. Are dresses for-
mal? Mostly True. If we replace ‘dresses’ with ‘shirts’, it be-
comes more subtle. Shirts are formal to a certain extent and
not formal to a certain extent. In any case, however, they are
generally not as formal as dresses. Formality involves ambi-
guities that cannot be clearly defined.
In this paper, a computational model is proposed to a non-
Boolean proposition of the form:

”X is {A-like} to the extent σ”. (∗)
where, X is any concept, and {A-like} is an element of a set
of ill-defined but intrinsic qualities of X . This evaluation is
contrasted with judgments of synonymy that have an ‘is-a’
type form, and is based on the assumption, as mentioned by
Clark (1987), that absolute synonym do not exist. In other
words, the proposition (∗) has the characteristic of ”simul-
taneous decidability”. We call this type of evaluation Intrin-
sic Analysis (IA). It is important to note that the degree to
which conceptX is {A-like} is not strictly defined, therefore
dynamic and fuzzy. At the same time the intrinsic semantic

property is possessed by the concept itself without reference
to other concepts. {A-like} includes adjectives, hypernyms,
synonyms and other relationships.
The goal of IA is to model a general structure of meaning by
the spectrum of semantic qualities. Sentiment analysis can
be viewed as a part of IA, where words related to sentiment
are assigned to {A-like} in (∗). Topic modeling can also be
regarded as a part of IA, where {A-like} in (∗) are words re-
lated to topics. The decision of synonymy in semantic simi-
larity is a special case of (∗).
A concept similar to {A-like} has been defined by Cruse
(2004) as quality. Difference of quality is roughly tested by
whether we can say:

X is not A, X is B.

He listed the following as the typical set of ontological types:

THING / QUALITY / QUANTITY / PLACE / TIME /
STATE / PROCESS / EVENT / ACTION / RELATION /
MANNER

Is it modern? (time); Does it exist in nature? (place); Is it
luxurious? (quality); Is it related to a political context? (re-
lation); Is it formal? (manner). All of these qualities can be
assigned to {A-like} in the IA form (∗). IA does not deal
with the evaluation of sentences such as:

The man is my father.

Whether this statement is true or false, or how plausible it
is, depends on a relation that is not intrinsic to the element
”The man”. It is sure that ”The man” has a certain semantic
fuzziness, but it is not intrinsic.

Let us consider a computational model that handles this
IA-type problem. Firstly, the proposed computational model
define a semantic quality using antisymmetry of opposing
concepts. It relies on the assumption that opposing concepts
have a symmetrical multi-dimensional structure that repre-
sents a spectral combinations of features of a meaning in a
word vector space. Second, a subspace where σ = 0 in the
proposition (∗) is generated. We call this subspace (i.e., a
linear decision boundary separates the signs of σ) a Neu-
tral Semantic Subspace, and the extent σ of X is given by
the projection of X onto the orthogonal complement of this
subspace. These technical details are described in Section 3.

Section 2 discusses the basic policies that are prerequi-
sites for the realization of the IA model, based on existing



research on semantic formalization and computational mod-
els of words. Section 3 describes the details of the theory of
the computation model. In section 4, the results of three ex-
periments show that this computational model (1) acts well
in judging synonymy, a special case of IA, (2) outperforms
several existing methods in a sentiment analysis task, a sub-
category of IA, and (3) is consistent with human intuition
in its IA evaluation of the intrinsic descriptive meaning of a
document.

2 Related Work
The Formalization of Semantics. The question of what
is the definition of ”meaning” and how it should be repre-
sented quantitatively is an open question. In Frege (1948)’s
analytic philosophy, the reference and sense of a sign are
distinguished from the associated idea which is subjective.
However, by nature, subjective ambiguity is unavoidable in
reasoning. Zadeh (1988) presented a logical system that tol-
erates ambiguity and allows statements to take continuous
truth values. According to the quantum-probabilistic formal-
ism developed by von Neumann (1955), an observable state
variable is described by the spectrum of two or more states
and therefore has ”simultaneous decidability”. The question
of semantic representation seems to reduce to the problem
of how the meanings of each concept are common, similar,
or different. Thus, it is suggestive to consider the field of se-
mantic similarity, which in recent years has moved toward
greater rigor in the formalization of semantics.
Currently, semantic similarity is considered mainly for syn-
onymy. Budanitsky and Hirst (2006) claim that similarity is
only a special case of semantic relatedness and proposed the
term near-synonym. Clark (1987), based on observations of
the early stages in the acquisition of language, showed that
many apparent synonyms are in fact not synonyms. For ex-
ample, ’big’ and ’large’ are generally considered to be syn-
onymous, both surely being close in the sense of taking high
measurements, but simultaneously completely opposite in
the sense of whether it is additive or non-additive. Therefore,
the synonymy is regarded as merely the result of a particular
biased situation described as a continuous spectrum of rela-
tionships. Thus, all related concepts may be simultaneously
near and far in meaning, and the totality of qualities seems
to determine the relationship and the definition.
From these perspectives, in this study, each concept is
viewed as a set of semantic qualities, and the spectrum of
the qualities defines the total meaning of the concept, or the
relationships with other concepts. Each concept is in a vector
space that represents semantic relatedness i.e., the superor-
dinate concept of any linguistic category. These qualities are
written as {A-like} in the (∗) form of IA. Conversely, in the-
ory, a concept X is represented as the union of all {A-like}
qualities in this model.

Computational Model of Words. According to the dis-
tributional hypothesis of Harris (1954), words sharing se-
mantic relationships tend to occur in similar contexts. After
this hypothesis was proposed, semantic vector space models
learned from the distribution of words in large unlabeled text
corpora have been successful in tasks including informa-

tion retrieval. Latent Semantic Analysis (LSA) (Deerwester
et al. 1990) generates a word-document co-occurrence ma-
trix whose features are linear combinations of tf-idf features.
Word2Vec (Mikolov et al. 2013) and GloVe (Pennington,
Socher, and Manning 2014) efficiently learn statistical in-
formation from word-word co-occurrences on large datasets
and estimate higher-dimensional continuous representations
of words.
Whereas these models require only large documents as the
training set, manually created lexical resources according to
linguistic classification (Miller et al. 1990; Fellbaum 1998;
Hill, Reichart, and Korhonen 2015) are used as a stand-alone
evaluation set, or as external resources to be injected into and
pre-trained vector models for their enrichment (Mrkšić et al.
2017; Wieting et al. 2015).
Surely the methods using lexical resources are accurate in
some sense, and the injected vector models have shown
state-of-the-art performance on some specific tasks. How-
ever, as discussed above, it is not practical to manually orga-
nize the semantic structure between concepts described with
a myriad of combinations of continuous semantic qualities.
Furthermore, words and concepts are being created and are
evolving every day. Also, some semantic qualities that can-
not be measured by the task may be lost due to optimization
for a particular task, such as synonymy.
As the computational basis of IA model, using semantic re-
latedness is a reasonable choice since it encompasses sub-
divided complex semantic categories. And if we follow the
distributional hypothesis, semantic relatedness is modeled
by word co-occurrence. Therefore, in this work, in order to
represent continuous spectral structures of meaning without
using external lexical resources, Word2Vec and GloVe are
used as the computational foundation for a co-occurrence-
based semantic vector space.

3 The IA Model
3.1 Antisymmetric Concepts Matrix to Define a

Semantic Quality
Suppose we wish to generate a mathematical model that
evaluates the degree to which a given concept has an in-
tended intrinsic semantic quality. From the word embedding
matrix E ∈ Rm,n, whose features are m and vocabularies
are n, let us take N

2 opposing pairs that are representative
for that semantic quality, and let S0 be a new matrix whose
column vectors are the N

2 selected pairs. S0 ∈ RN×m is
generally a full-rank rectangular matrix with N < m. To
center the distribution in the vector space of S0 at the center
of the coordinates, let us consider a linear operator ψ that
transforms S0 such that sij − µi is the entry of matrix S af-
ter transformation, where sij is each entry of S0 and µi is its
row mean. The linear operator ψ is given by,

ψ : S0 7→ S

sij − µi

ψ = I − 1

N
JN (1)

where JN is an N by N matrix ones and I is an N by N
identity matrix.



Figure 1: (a) Hypothetical example 1 - In the left figure, there is no hyperplane, i.e., straight line, in R2 separating orange and green. In fact,
the left figure is a compressed 3D space, and the vectors are placed as in the right figure. In this case, the hyperplane, i.e., plane, separating
orange and green does exist. According to the experiments in Chapter 4, models with more than 10-dimensions tend to perform well. (b)
Hypothetical Example 2 - The vector with the meaning close to A1 is A2. However, in cosine similarity, B1 is closer than A2. Nevertheless
the meaning polarity of B1 is opposite to A1.

Here, let the transformed, centered matrix S be the Anti-
symmetric Qualities Matrix.

3.2 Find a Neutral Semantic Subspace
When words with opposite qualities are distributed over a
vector space, by its semantic linear regularity, a linear man-
ifold that places these pairs of opposites symmetrically on
one side and the other, can be considered a Neutral Se-
mantic Subspace, where σ = 0 in (∗). For example, on a
plane in R2, a line of R1 separates the semantically op-
posite pairs; in R3, a plane of R2 separates the opposite
pairs as well symmetrically. Thus, in general, in a space
of Rn, the Rn−1 linear manifold, that is hyperplane, sep-
arates opposite pairs symmetrically. Note that n ≥ 4, since
n = (number of pairs chosen× 2) and the at least 2 pairs
are selected in the operation 3.1. Let us consider spanning
the hyperplane by singular vectors of S. This is because the
singular vectors especially corresponding to large singular
values point in the direction of the spread of the distribution
of antisymmetric pairs, so some of them can be assumed to
be a boundary running through ideally the center of each
pair. Therefore, we assume that the subspace spanned by
n − 1 of the n singular vectors of S is the expected linear
manifold, that is the Neutral Semantic Subspace.

3.2.1 Singular Value Decomposition
To obtain a set of orthogonal basis vectors that reflect the
spread of data in the antisymmetric pairs that constitute S
and ideally run through the center of each pair, a (Reduced)
Singular Value Decomposition is performed on S:

S = σ1u1v
T
1 + · · ·+ σNuNvT

N = UΣV T (2)
where v represents the eigenvectors of STS, u represents
the eigenvectors of SST , and the square roots of σ repre-
sent the non-zero eigenvalues of ATA and AAT . v and u
are called (left and right) singular vectors, respectively. The
square roots of σ are called singular values of S. The dimen-
sions of U , Σ, and V are

U ∈ RN×N ,Σ ∈ RN×N , V ∈ Rm×N (3)
U holds N singular vectors of dimension N , which are used
in Section 3.2.3 to find the equations of the hyperplane, and

V holds m singular vectors of dimension m, which are used
for mapping a word vector on any S with m features to the
N -dimensional space. As noted above, the singular vectors
especially corresponding to large singular values of σ are
assumed to span a subspace separating the pairs symmetri-
cally.

3.2.2 Projection Operator
In considering a manifold on anN -dimensional space, let us
prepare an operator that projects an arbitrarym-dimensional
matrix (or vector) X onto an N -dimensional space, so that
words in S represented by an m-dimensional feature space
can be handled in the N -dimensional space.
V ′ = {vi}, leaving only r singular vectors from V , is a
linear map that maps X to an r-dimensional space. Let V ′

be the projection operator ϕ and the transformed matrix (or
vector) be X ′.

ϕ : XV ′ 7→ X ′ ∈ Rn×r, ∀X ∈ Rn×m

V ′ ∈ Rm×r = {vi} (i = {1, . . . , N}) (4)
Note that the basis of the transformed matrixX ′ is {vi} (i =
1, . . . , N). This allows any word vector x ∈ Rm of S or E
to be projected onto a N -dimensional space with {vi} (or
{ui}) as the orthonormal bases.

∀x ∈ Rm ϕ(x) = x′ ∈ RN (5)

3.2.3 Compute Neutral Semantic Subspace
Hyperplane on n-dimensional space Rn H is gehnerally
represented by

H : e1x1 + e2x2 + · · ·+ enxn = 0 (6)

where,

x =

 x1
...
xn


The coefficients e1, . . . , en can be obtained as the coeffi-
cients of each term of the cross product of n − 1 linearly
independent vectors v1, . . . ,vn−1 ∈ Rn. That is, hyper-
plane H is equal to

H : e1x1 + e2x2 + · · ·+ enxn = v1 × v2 × · · · × vn−1



=

∣∣∣∣∣∣∣∣
v1,1 v1,2 · · · v1,n

...
...

...
vn−1,1 vn−1,2 · · · vn−1,n

x1 x2 · · · xn

∣∣∣∣∣∣∣∣
= det

 v1,1 . . . v1,n
...

...
vn−1,1 . . . vn−1,n

x1
− det

 v1,1 v1,3 . . . u1,n
...

...
...

vn−1,1 vn−1,3 . . . vn−1,n

x2
+ · · ·

+ (−1)n det

 v1,1 . . . v1,n−1

...
...

vn−1,1 . . . vn−1,n−1

xN (7)

In the case of an N -dimensional space, N − 1 linearly
independent basis vectors {vi}, (i = {1, . . . , N − 1})
are needed. Now let us use the N singular vectors of S
obtained in 3.2.1 as this basis vectors. More specifically,
Ũ ∈ RN×N−1 is used, that is the N by N matrix U with
one arbitrary singular vector removed.
Note that the indexN−1 in uN−1 simply indicates the num-
ber of vectors u contained in Ũ , and does not mean that the
N -th singular vector is removed from U . The same applies
to the following.

Ũ =

[
u1 . . . uN−1

]
∈ RN×N−1 (8)

Using Ũ , equation (7) follows

H : e1x1 + e2x2 + · · ·+ eNxN = u1,u2 × · · · × uN−1

=

∣∣∣∣∣∣∣∣
u1,1 u1,2 . . . u1,N

...
...

...
uN−1,1 uN−1,2 . . . uN−1,N

x1 x2 . . . xN

∣∣∣∣∣∣∣∣ (9)

Each coefficient ei is computed by

ei = (−1)i det

 u1,1 . . . u1,i−1 u1,i+1 . . . u1,N
...

...
...

uN−1,1 . . . uN−1,i−1 uN−1,i+1 . . . uN−1,N

 (10)

As shown in equation (6), the coefficient vector e of H is
orthogonal to any vector x on H. In other words, if we de-
note the 1-dimensional subspace by V with a single vector
e as basis, then this V is the orthogonal complement of the
Neutral Semantic Subspace H, where σ = 0 in (∗).

∀x ∈ H, e ∈ V, V = H⊥

Thus, the inner product of e and any vector x

eTx (11)

is equal to the projective position of the word x onto the
orthogonal complement space e of H. That is, the magni-
tude of this value indicates how far away from the semanti-
cally neutral subspace the word x is, and its sign indicates to
which side of V , separated by the semantically neutral space
H, x belongs.
If x satisfies

eTx = 0 (12)

, then x lies on H. In other words, x is neutral in the meaning
defined here. Note that e is assumed to be normalized to
norm 1.

Neutral Semantic Subspace H divides the N -dimensional
spaceRN into two. Let us call one side of the partition A and
the other side B. The following equation determines which
side of A or B a vector x lies on.

{
eTx > 0 : On the A side divided byH
eTx < 0 : On the B side divided byH (13)

The further away from H toward A, i.e., the larger eTx is in
the positive direction, the stronger the degree of meaning A
is, and the further away from B, i.e., the larger eTx is in the
negative direction, the stronger the degree of meaning B is.

There are N ways to choose u1, . . . ,uN−1 in equation
(8). Thus, this choice allows us to find H in N ways. The
method to obtain the most reasonable Neutral Semantic Sub-
space out of N ways of H is defined as follows. Let xA be
a vector of words that belong to semantic category A in the
Antisymmetric Quailties Matrix S and xB be the vector of
words in semantic category B. If the subspace H spanned
by a certain n − 1 basis vectors separates them correctly,
then eTxA > 0 holds for xA and eTxB < 0 holds for xB ,
so the desired H is assumed to maximize the ratio of cor-
rectly classified words out of N number of words. That is,
the subspace that maximizes the following α is the Neutral
Semantic Subspace.

α =

∑N/2
i=0

eTxA,i

∥eTxA,i∥ +
∑N/2

i=0
−eTxB,i

∥eTxB,i∥

N
(14)

3.3 Intrinsic Quality Analysis
3.3.1 Projection onto the Complement of Neutral Seman-
tic Subspace
In relation to the semantic quality defined by S, let us in-
fer to which side an arbitrary concept belongs and to what
degree it belongs. As shown in Section 3.2.3, the result of
the inference is equal to the projection of the word x onto
e, where e is in the orthogonal complement of H. That is,
when we denote any word vector in the word embedding
matrix E by d, by using the coefficient vector e of the Neu-
tral Semantic Subspace H. the evaluation result is obtained
as the following value.

eTd′ (15)

Let us call this value Intrinsic Quality, i.e., σ in (∗). Here, d′

is a map Rm 7→ RN using the projection operator ϕ defined
in equation (5).



Figure 2: Six pairs used as the test set in the yes/no examination, plotted in 2- and 3-dimensional low-dimensional space. This figure shows
that there is no line or plane, i.e., linear subspace, that separates all conflicting pairs, and thus a multidimensional hyperplane is required.

∀d ∈ E, ϕ(d) = d′ ∈ RN×1 (16)

As described in section 3.2.3, the sign of this value indicates
to which side of the space divided by the Neutral Semantic
Subspace H the word d belongs. And its absolute value is
equal to how far away from H the word is, therefore indicat-
ing the degree to which the word d belongs to the meaning
of A or B.

 eTd′ > 0 : the word d has the meaning of A and its degree is eT d′

eTd′ = 0 : the word d has neigher A nor B meaning
eTd′ < 0 : the word d has the meaning of B and its degree is eT d′

(17)

3.3.2 Documents and Multiple Quality Estimation
When we consider a document as a set of l words {di}, the
evaluation of the document is given by the following value.

l∑
i=0

eTd′
i (18)

We then represent the document by a matrix D whose
columns are d1, . . . ,dl. With projection operator ϕ defined
in equation (5), D is mapped to N -dimensional space by a
single matrix operation. Let us denote this result D′.

D =

 − dT
1 −
...

− dT
l −

 ∈ Rl×m

ϕ : D ∈ Rl×m 7→ D′ ∈ Rl×N

The computation to simultaneously perform multiple quality
estimations of a document is given by

D′M (19)

where M is a matrix whose columns are coefficient vectors
{ej} of multiple models generated for k semantic qualities,
and the sum of each entry in row i of D′M is the estimation
value of the quality j of the document.

Figure 3: Intrinsic Quality computed using the IA model for six
pairs of yes/no implied words.

M =

[
e1 . . . ek

]
∈ RN×k

4 Experiments
To test the basic performance of the IA model, firstly a sim-
ple Yes/No word classification is performed. Second, a base-
line comparison on a Twitter sentiment classification task us-
ing SemEval-2013 is conducted. Third, some semantic qual-
ities of concepts described with words (film plot summaries
in this case) are estimated.

4.1 Yes/No Classification
First, to verify the basic performance, the test that classi-
fies words with simple yes and no meanings was performed.
These synonyms generally fail to be classified because they
are close in cosine distance (Tang et al. 2014). Three pairs of
six words were selected as words similar to yes and no: set
A (yes, absolutely, positive) and set B (no, never, negative)
as antisymmetric pairs to generate a model. These words
were then extracted from the column vectors of the embed-
ding matrix to create an Antisymmetric Concepts Matrix,



word pairs used to calculate models embedding Macro F1 recall precision F1
A(good, nice, awesome) Word2Vec 68.65 74.75 80.60 77.56
B(bad, ugly, horrible) GloVe 70.13 81.53 78.19 78.83
A(good, nice, awesome, happy) Word2Vec 73.38 94.43 75.19 83.72
B(bad, ugly, horrible, sad) GloVe 73.82 81.60 82.16 81.88
A(good, nice, awesome, happy, love, fun) Word2Vec 73.03 96.81 74.00 83.88
B(bad, ugly, horrible, sad, hate, boring) GloVe 75.00 99.12 74.68 85.18
A(good, nice, beautiful, awesome, happy, love, fun) Word2Vec 74.11 97.28 74.67 84.49
B(bad, unpleasant, ugly, horrible, sad, hate, boring) GloVe 77.71 90.36 81.06 85.46

Table 1: Performance results of positive/negative classification on the SemEval-2013 test dataset for different word pairs and
embeddings used to compute the Neutral Semantic Subspace.

Positive Negative Neutral
Train 2,642 994 3,4346
Test 1,570 601 1,639
Dev 408 219 493

Table 2: Statistics of the SemEval-2013 Twitter sentiment
analysis dataset.

Method Macro F1
DistSuper + unigram 61.74
DistSuper + uni/bi/tri-gram 63.84
SVM + unigram 74.50
SVM + uni/bi/tri-gram 75.06
RAE 75.12
IA model 14-dim + GloVe 77.71

Table 3: Comparison of Macro F1 with existing methods for
positive/negative classification of tweets.

and a 6-dimensional Neutral Semantic Subspace was com-
puted based on the method described in Chapter 3. The test
sets for A and B were selected as A’ (yeah, true, yep, accept,
like, love) and B’ (none, false, nop, deny, dislike, hate), re-
spectively, and the Intrinsic Quality defined by equation (15)
was obtained for each word.

Figure 2 shows the 2D and 3D mappings of the word vec-
tors in the six test sets A’ and B’. The word embedding ma-
trix used was Word2Vec SGNS trained on the 3 million word
Google News dataset. Figure 3 shows the results of the In-
trinsic Quality for the same test set. The results show that
yeah/none, which have almost equal meanings to yes/no, are
the best related. All other words belonging to A’ have posi-
tive values, and all words belonging to B’ have negative val-
ues. Similar results were obtained using GloVe 1.2 trained
on the 2.2 million word Common Crawl dataset under the
same conditions.

The results of the Intrinsic Quality values vary depending
on how the antisymmetric pairs are chosen. The choice of
the best pairs is currently left to heuristics. In other words,
the choice of base terms can be flexible depending on the
purpose.

Label
positive

Label
negative

Total

Predict
positive

1,331 331 1,642

Predict
negative

142 248 390

Total 1,473 559 2,032

Table 4: Classification results for the model with the best
Macro F1 among 8 models showed in Table2

4.2 SemEval-2013 Sentiment Analysis Task
Next, experiments on the Twitter sentiment classification
benchmark dataset of SemEval-2013 (Nakov et al. 2013)
were conducted. Since the purpose of the IA model is to
evaluate the degree of positivity/negativity of σ in (∗) as a
continuous value, the investigation was conducted using a
2-class classification of Positive/Negative, excluding Neu-
tral. Thus, the test set that contains 2,032 Positive/Negative
texts was used. A model was generated by selecting a few
antisymmetric pairs that were close to the Positive/Negative
meaning, and the Intrinsic Quality of each Tweet text was
calculated according to equation (18). Words that were not
included in the vocabulary of the embedding matrix were
ignored. 174 stop words were removed in advance. Table 1
shows the results of Macro F1 and other performance indica-
tors of classification performance on the SemEval-2013 test
data.

The same pretrained Word2Vec and GloVe models as in
4.1 were used for comparison. In both cases, performance
was improved by increasing the number of antisymmetric
pairs, but beyond seven pairs, it became difficult to find ad-
ditional words that would improve performance further. This
does not imply that there is no possibility to improve perfor-
mance beyond a 8× 2 = 16 dimensional model, although it
does mean that simply increasing the number of pairs does
not always produce better results. It suggests that the opti-
mal design will vary depending on how the pairs are cho-
sen and the nature of the target task. Further discussions of
the optimal selection method require additional research. Fi-
nally, Macro F1 reached 77.71% with the model generated
from GloVe using 7 pairs. This exceeds the performance of
DistSuper, SVM and RAE (Tang et al. 2014). Table 3 com-



Semantic 1 2 3
War Sin City -1.49 Monster-in-Law -1.43 Sideways -1.15

Peace 50 First Dates 0.36 Coach Carter 0.34 The Longest Yard 0.32

Modern Napoleon
Dynamite 1.53 S.W.A.T 1.51 Coach Carter 1.29

Classic Bewitched -0.48 Finding
Neverland -0.4 Ray -0.14

Art - - - - - -

Pop Ray 1.35 50 First Dates 1.26
The Hitchhiker’s

Guide to the
Galaxy

1.25

Table 5: The films with the highest 3 values for each definition of quality based on the analysis of their plot summaries.

Figure 4: An Intrinsic Quality {(-war/+peace)-like} computed for an arbitrary selected test set of concepts (left) and for the 20 film plot
summaries (right) using the IA model.

pares Macro F1 score with each method on the Positive/Neg-
ative classification task to SemEval-2013 using the scores
presented in (Tang et al. 2014).
The crucial difference between other models and this model
is that, while other models use the same kind of data for
training as they use for inference and therefore are optimized
for the task, this method does not use any of the same kind
of data for training as it uses for inference.

4.3 Intrinsic Analysis of Concepts Described
with Words

Finally, an evaluation experiment were conducted on plot
summaries of several films to analyze Intrinsic Qualities of
concepts described with words. Here, experiments were con-
ducted on three defined meanings using the 20 films with the
highest number of ratings in the Netflix Prize Data Set (Funk
2006). All the plot summaries are listed in Technical Appen-
dices.
Three meanings were defined for this experiment: (1) war/-
peace, (2) modern/classic, (3) art/pop. (1) war/peace was
modeled by the word group A (war, fight, violence) and B
(peace, love, romance). (2) modern/classic was modeled by
the group A (futuristic, innovative, modern) and B (classi-
cal, old-fashioned, traditional). (3) art/pop was modeled by
the group A (art, documentary, academic) and B (entertain-
ment, pop, commercial).
Table 7 shows the top three for each semantic definition and
their Intrinsic Qualities. As a whole, the results are consis-

tent with what most people are likely to imagine. Interest-
ingly, not a single one of the 20 works was judged to be
”art-like”.

5 Conclusion
This study presented one possibility for a general structure
of meaning and a computation model to analyze that struc-
ture. In this model, a concept was represented as a spectrum
of continuous qualities or a union set of them with simul-
taneous decidability. A non-Boolean propositional form that
evaluates individual semantic {A-like} properties was called
IA (Intrinsic Analysis), and the IA model was presented as a
computational model for it. Since there are a myriad of ele-
ments that make up the meaning of concepts, this paper only
discussed and verified the basic ideas and demonstrates the
potential of the computation model. The question of what
meaning is in the quantization of human thought and rea-
soning is an essential one that has not yet been clearly an-
swered. It is believed that the exploration of this question
will eventually open up a new relationship between humans
and machines.
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A Technical Appendices
A.1 List of Stopwords Used in All Experiments
a, about, above, after, again, against, all, am, an, and, any,
are, arent, as, at, be, because, been, before, being, below, be-
tween, both, but, by, cant, cannot, could, couldnt, did, didnt,
do, does, doesnt, doing, dont, down, during, each, few, for,
from, further, had, hadnt, has, hasnt, have, havent, having,
he, hed, hell, hes, her, here, heres, hers, herself, him, himself,
his, how, hows, i, id, ill, im, ive, if, in, into, is, isnt, it, its, its,
itself, lets, me, more, most, mustnt, my, myself, no, nor, not,
of, off, on, once, only, or, other, ought, our, ours, ourselves,
out, over, own, same, shant, she, shed, shell, shes, should,
shouldnt, so, some, such, than, that, thats, the, their, theirs,
them, themselves, then, there, theres, these, they, theyd,
theyll, theyre, theyve, this, those, through, to, too, under, un-
til, up, very, was, wasnt, we, wed, well, were, weve, were,
werent, what, whats, when, whens, where, wheres, which,
while, who, whos, whom, why, whys, with, wont, would,
wouldnt, you, youd, youll, youre, youve, your, yours, your-
self, yourselves

A.2 SemEval-2013 Sentiment Analysis Task
Results of 8 Models Discribed in Chapter 4.2

Antisymmetric concepts used to compute a model 1:
A (good, nice, awesome)
B (bad, ugly, horrible)

1-1. Word2Vec

Label
positive

Label
negative Total

Predict positive 1,101 265 1,366
Predict negative 372 294 666
Total 1473 559 2,032

1-2. GloVe

Label
positive

Label
negative Total

Predict positive 1,201 335 1,536
Predict negative 272 224 496
Total 1,473 559 2,032

Antisymmetric concepts used to compute a model 2:
A (good, nice, awesome, happy)
B (bad, ugly, horrible, sad)

2-1. Word2Vec

Label
positive

Label
negative Total

Predict positive 1,201 335 1,536
Predict negative 272 224 496
Total 1,473 559 2,032

2-2. GloVe

Label
positive

Label
negative Total

Predict positive 1,202 261 1,463
Predict negative 271 298 569
Total 1,473 559 2,032

Antisymmetric concepts used to compute a model 3:
A (good, nice, awesome, happy, love, fun)
B (bad, ugly, horrible, sad, hate, boring)

3-1. Word2Vec

Label
positive

Label
negative Total

Predict positive 1,426 501 1,927
Predict negative 47 58 105
Total 1,473 559 2,032

3-2. GloVe

Label
positive

Label
negative Total

Predict positive 1,460 495 1,955
Predict negative 13 64 77
Total 1,473 559 2,032

Antisymmetric concepts used to compute a model 4:
A (good, nice, beautiful, awesome, happy, love, fun)
B (bad, unpleasant, ugly, horrible, sad, hate, boring)

4-1. Word2Vec

Label
positive

Label
negative Total

Predict positive 1,433 486 1,919
Predict negative 40 73 113
Total 1,473 559 2,032

4-2. GloVe

Label
positive

Label
negative Total

Predict positive 1,331 311 1,642
Predict negative 142 248 390
Total 1,473 559 2,032



A.3 Yes/No Classification Results

Word2Vec SGNS Google News 3M

GloVe 1.2 CC 2.2M

A.4 Titles and Plot Summaries of Films used in
Chapter 4.3

1. Batman Begins: As a toxic threat endangers a corrupt
city, Bruce Wayne finds himself at odds with a assassins
and forced to battle more than his own demons.

2. What Women Want: When a sexist advertising ex-
ecutive is suddenly able to hear women’s thoughts, he’s not
nearly as charming as he thinks he is.

3. The Wedding Planner”: Wedding planner Mary Fiore is
saved from an accident by the man of her dreams – only to
discover that he happens to be her latest client’s fiance.

4. Crash: In post-Sept. 11 Los Angeles, tensions erupt
when the lives of people from all walks of life converge
during a 36-hour period

5. S.W.A.T.: A veteran cop is tasked with drafting and
training and training a special weapons and tactics team,
who soon find themselves up against an international
criminal.

6. The Longest Yard: While doing time, a professional
quarterback persuades a fellow convict and former coach to
prepare a group of inmates for a game against the guards.

7. Bewitched: Isabel Bigelow seems to be the perfect
Samantha to star in a remake of the 1960s sitcom ’Be-
witched’ – but no one knows she really is a witch!

8. Million Dollar Baby: When a cantankerous trainer
mentors a persistent amateur boxer determined to go pro,
deep- seated emotions become their strongest opponents.

9. Ray: From a satire to a psychological thriller, four
short stories from celebrated auteur and writer Satyajit Ray
are adapted for the screen in this series.

10. Coach Carter: When he takes over as Richmond
High School’s new basketball coach, Ken Carter demands
that players show up academically as well as athletically.

11. 50 First Dates: After falling for an art teacher with
short-term memory loss, a veterinarian finds he must win
her over again every single day.

12. Pay It Forward: A young boy attempts to make
the world a better place after his teacher gives him that
chance.

13. Sideways: Two men reaching middle age with not
much to show but disappointment embark on a week-long
road trip through California’s wine country, just as one is
about to take a trip down the aisle.

14. Monster-in-Law: The love life of Charlotte is re-
duced to an endless string of disastrous blind dates, until she



meets the perfect man, Kevin. Unfortunately, his merciless
mother will do anything to destroy their relationship.

15. The Interpreter: An interpreter for the United Nations
finds herself in danger after she overhears an assassination
plot and turns to a skeptical federal agent for help.

16. Finding Neverland: The story of Sir J.M. Barrie’s
friendship with a family who inspired him to create Peter
Pan.

17. Man on Fire: A jaded ex-CIA operative reluctantly
accepts a job as the body guard for a 10-year-old girl in
Mexico City and will stop at nothing when she’s kidnapped.

18. Sin City: A busy couple tries to give their love
life a boost by taking an impromptu weekend trip only to
find their relationship tested in unexpected ways.

19. Napoleon Dynamite: A listless and alienated teenager
decides to help his new friend win the class presidency in
their small western high school, while he must deal with his
bizarre family life back home.

20. The Hitchhiker’s Guide to the Galaxy, Mere sec-
onds before the Earth is to be demolished by an alien
construction crew, journeyman Arthur Dent is swept off the
planet by his friend Ford Prefect, a researcher penning a
new edition of “The Hitchhiker’s Guide to the Galaxy”.

A.5 Results of Intrinsic Analysis Described in
Chapter 4.3

1. War/Peace
1-1. Related concepts

1-2. Concepts described with words (film plot summaries)

2. Modern/Classic
2-1. Related concepts

2-2. Concepts described with words (film plot summaries)

3. Art/Pop
3-1. Related concepts

3-2. Concepts described with words (film plot summaries)


